9,706 research outputs found

    An investigation into reducing the spindle acceleration energy consumption of machine tools

    Get PDF
    Machine tools are widely used in the manufacturing industry, and consume large amount of energy. Spindle acceleration appears frequently while machine tools are working. It produces power peak which is highly energy intensive. As a result, a considerable amount of energy is consumed by this acceleration during the use phase of machine tools. However, there is still a lack of understanding of the energy consumption of spindle acceleration. Therefore, this research aims to model the spindle acceleration energy consumption of computer numerical control (CNC) lathes, and to investigate potential approaches to reduce this part of consumption. The proposed model is based on the principle of spindle motor control and includes the calculation of moment of inertia for spindle drive system. Experiments are carried out based on a CNC lathe to validate the proposed model. The approaches for reducing the spindle acceleration energy consumption were developed. On the machine level, the approaches include avoiding unnecessary stopping and restarting of the spindle, shortening the acceleration time, lightweight design, proper use and maintenance of the spindle. On the system level, a machine tool selection criterion is developed for energy saving. Results show that the energy can be reduced by 10.6% to more than 50% using these approaches, most of which are practical and easy to implement

    Experimental study on energy consumption of computer numerical control machine tools

    Get PDF
    Machining processes are responsible for substantial environmental impacts due to their great energy consumption. Accurately characterizing the energy consumption of machining processes is a starting point to increase manufacturing energy efficiency and reduce their associated environmental impacts. The energy calculation of machining processes depends on the availability of energy supply data of machine tools. However, the energy supply can vary greatly among different types of machine tools so that it is difficult to obtain the energy data theoretically. The aim of this research was to investigate the energy characteristics and obtain the power models of computer numerical control (CNC) machine tools through an experimental study. Four CNC lathes, two CNC milling machines and one machining center were selected for experiments. Power consumption of non-cutting motions and material removal was measured and compared for the selected machine tools. Here, non-cutting motions include standby, cutting fluid spraying, spindle rotation and feeding operations of machine tools. Material removal includes turning and milling. Results show that the power consumption of non-cutting motions and milling is dependent on machine tools while the power consumption of turning is almost independent from the machine tools. The results imply that the energy saving potential of machining processes is tremendous

    CoSformer: Detecting Co-Salient Object with Transformers

    Full text link
    Co-Salient Object Detection (CoSOD) aims at simulating the human visual system to discover the common and salient objects from a group of relevant images. Recent methods typically develop sophisticated deep learning based models have greatly improved the performance of CoSOD task. But there are still two major drawbacks that need to be further addressed, 1) sub-optimal inter-image relationship modeling; 2) lacking consideration of inter-image separability. In this paper, we propose the Co-Salient Object Detection Transformer (CoSformer) network to capture both salient and common visual patterns from multiple images. By leveraging Transformer architecture, the proposed method address the influence of the input orders and greatly improve the stability of the CoSOD task. We also introduce a novel concept of inter-image separability. We construct a contrast learning scheme to modeling the inter-image separability and learn more discriminative embedding space to distinguish true common objects from noisy objects. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and Cosal2015, demonstrate that our CoSformer outperforms cutting-edge models and achieves the new state-of-the-art. We hope that CoSformer can motivate future research for more visual co-analysis tasks

    Analysis of Enterprise Behavior Game under the Condition of Carbon Taxes and New Energy Subsidies

    Get PDF
    In this paper, a dynamic game model of duopoly firms between the traditional electric power enterprises and new energy enterprises was established for analyzing the behaviors of electric power enterprises under different government carbon taxes policies and the corresponding Nash equilibrium. This goal of the model was set to maximize the total social welfare while considering the economic, social and environmental benefit. This model was further used to calculate the optimal carbon tax rate and optimal government subsidy level for both traditional electric power enterprises and new energy enterprises. The results showed that a reasonable carbon tax rate and return mode can optimize the structure of Chinese power industry, encouraging the high-carbon enterprises to reduce emission, promote the development of low carbon enterprises, and reduce the overall carbon dioxide emission from the power industry
    • ā€¦
    corecore